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Purpose
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To understand the physics of and to mitigate NBTI 
in GaN n-MOSFETs.
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• Promising for a wide range of applications

30 V 600 V > 1200 V

GaN for power electronics

• Negative-Bias Temperature Instability (NBTI) is a 
major concern:
• Operational instability
• Long-term reliability

Challenge: mechanisms responsible for NBTI?



• MIS-HEMT: Metal-Insulator-Semiconductor High Electron 
Mobility Transistor 

• Large gate swing, low gate leakage
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Passivation Passivation

GaN MIS-HEMT for high voltage applications



• MIS-HEMT: Metal-Insulator-Semiconductor High Electron 
Mobility Transistor 

• Large gate swing, low gate leakage
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[Lagger, TED 2014]

• Presence of gate oxide brings new stability and reliability 
concerns not present in HEMTs

Passivation Passivation

GaN MIS-HEMT for high voltage applications
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[Meneghini, EDL 2016]

Stress Recovery

VGS,stress = -10 V

NBTI of GaN MIS-HEMT

• Large ∆VT < 0 at moderate VGS,stress, slow partial recovery
• Possible mechanism: trapping in multiple layers and interfaces
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• Large ∆VT < 0 at moderate VGS,stress, slow partial recovery
• Possible mechanism: trapping in multiple layers and interfaces

To better understand NBTI: 
Stress voltage dependence ; dynamics of S and gm,max ; simpler structure

Stress Recovery

VGS,stress = -10 V

NBTI of GaN MIS-HEMT

[Meneghini, EDL 2016]



• Industrial prototype devices
• SiO2/Al2O3 composite gate dielectric, EOT = 40 nm 
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• Isolate oxide and oxide/GaN interface 
IRPS 2015: PBTI 
This work: physical mechanisms behind NBTI of GaN MOSFET 

metal

oxide
GaN channel

Simpler GaN MOSFET structure
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Device screening 
and initialization

Recovery and 
characterization

Stress and 
characterization

• VT :  VGS value when ID = 1 µA/mm
• S : Extracted at ID = 0.1 µA/mm
• gm,max: Extracted from IDS-VGS ramp
• All at VDS = 0.1 V
• First sample: ~ 1- 2 s after removal 

of stress
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Thermal detrapping

I/V sweep

Increase stress voltage 
or temperature

Experiment flow and FOM definition
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*TD: Thermal Detrapping

After TD 

This work: GaN MOSFET
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VT shift overview

Three regimes:
• Small negative ∆VT positive ∆VT negative ∆VT

• Permanent negative ∆VT after TD



Three regimes:
• Small negative ∆VT positive ∆VT negative ∆VT

• Permanent negative ∆VT after TD

*TD: Thermal Detrapping

Si HKMG p-MOSFET

After TD 

This work: GaN MOSFET

[Zafar, TDMR 2005]

tHfO2 = 2.5 nm
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VT shift overview



• Negative ΔVT ,|ΔVT| increases with tstress and |VGS,stress| 
• Minimal ∆S
• Complete recovery

After TD

After TD
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Regime 1 (low-stress)
Time evolution of ΔVT and ΔS at RT 



• Simple parallel VT shift that completely recovers

VGS,stress = -1 V, tstress = 10,000, RT
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Regime 1 (low-stress)
ID-VGS and CG-VG characteristics



• Rate of VT shift shows slight positive T dependence
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Regime 1 (low-stress)
Temperature dependence



• Power law with n = 0.28 to 0.4
• Similar to PBTI observation [Guo, IRPS 2015]
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Regime 1 (low-stress)
Modeling



• Consistent with electron detrapping and retrapping from/to pre-
existing oxide traps

Electron detrapping
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Electron retrapping

Regime 1 (low-stress)
ΔVT mechanism

Initial

• Also seen in Si HKMG MOSFETs [Young, IRWS 2003] and Al2O3/InGaAs
MOSFETs [Wrachien, EDL 2011]



• ∆VT > 0
• |VGS,stress|↑, tstress↑  ΔVT ↑, ΔS ↑, |Δgm,max| ↑
• ∆VT , ∆S and |Δgm,max| mostly recoverable
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Regime 2 (mid-stress)
tstress evolution of ΔVT , ΔS and Δgm,max at RT 



• All parameter shifts enhanced by T
• At high T, recovery incomplete  transition to regime 3

VGS,stress = -10 V
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Regime 2 (mid-stress)
Temperature dependence



• ΔVT and ΔS are linearly correlated throughout the entire 
experiment, and completely recover
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Regime 2 (mid-stress)
∆VT and ∆S correlation



• Temporary charge buildup around threshold after stress

VGS,stress = -20 V, tstress = 1,000 s, RT

26

Temporary charge buildup

Regime 2 (mid-stress)
C-V characteristics
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[Jin, IEDM 2013]

Regime 2 (mid-stress)
∆VT mechanism



• High field at edges of gate  Zener trapping in GaN substrate
• Energy bands at surface of GaN channel ↑ Positive ΔVT, ΔS
• Thermal process effective in electron detrapping
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[Jin, IEDM 2013]

x

y

Regime 2 (mid-stress)
∆VT mechanism
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 Similar to regime 2

 Additional permanent negative ΔVT

Regime 3 (high-stress)
tstress evolution of ΔVT at RT
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Regime 3 (high-stress)
tstress evolution of ΔVT at RT

• tstress ↑, |VGS,stress| ↑  permanent |ΔVT|↑, ΔS ↑ and |Δgm,max|↑



• T ↑  permanent |ΔVT|↑, ΔS ↑ and |Δgm,max|↑

VGS,stress = -70 V, tstress = 1 – 10,000 s
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Regime 3 (high-stress)
Temperature dependence



• Permanent ΔVT , ΔS and Δgm,max well correlated

Measurements at RT
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Regime 3 (high-stress)
Correlation of permanent ΔVT , ΔS and Δgm,max



• Prominent ΔVT , ΔS and Δgm,max correlate with a softening of C-V 
characteristics around threshold

VGS,stress = -70 V, tstress = 500 s, T = 125°C 
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Regime 3 (high-stress)
ID-VGS and CG-VG characteristics



• Interface state generation under high gate stress

• Well-studied mechanism in Si MOS system [Schroder, JAP 2007] 
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Regime 3 (high-stress)
∆VT Mechanism
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Identified three degradation mechanisms:
• Regime 1 (low-stress)

• Observation: small, recoverable negative ∆VT
• Mechanism: electron detrapping from pre-existing oxide traps

• Regime 2 (mid-stress):
• Observation: recoverable positive ∆VT and ∆S
• Mechanism: Zener trapping in channel under edges of gate

• Regime 3 (high-stress):
• Observation: negative, non-recoverable ∆VT , ∆S and ∆gm,max
• Mechanism: interface state generation

36

NBTI of GaN MOSFETs
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